Organic Chemistry 17.1

Introduction to Organic Compounds
Naming Alkanes
Isomers of Alkanes
Naming Cycloalkanes

What are Organic Compounds?

(1807) The term organic compound originated

Meant compounds derived from living organisms

(1828) Urea, an organic compound, was synthesized:

$$\begin{array}{ccc}
NH_3 + HCNO & \rightarrow & H_2N - C - NH_2 \\
& & \uparrow & \\
Inorganic & Organic
\end{array}$$

Urea, a component in animal urine

What are Organic Compounds?

(Today) Organic Compounds are compounds that contain the element carbon.

Except for the following:

Carbonates, CO₂, CO, diamond, and graphite.

What are Organic Compounds?

Rubber

Latex

Silk

Nylon

Methane Gas and Motor Oil

Plastic

Drugs

Most Compounds are Organic

Of the ~20 million compounds that are know today, about 90% are organic!

Why?

- Carbon bonds to itself in different ways.
 - Forms long chains
 - Forms rings
- Carbon bonds with many other elements.
 - Especially H, O, N, S, and halogens.

Hydrocarbons

Contain only C and H

- 1) Alkanes (saturated)
- 2) Alkenes (unsaturated)
- 3) Alkynes (unsaturated)
- 4) Aromatic Hydrocarbons (unsaturated)

Naming Alkanes		
Prefix = #	of carbons in chair	n Suffix = -ane
CH_4	methane	natural gas
C_2H_6	ethane	
C_3H_8	propane	BBQ fuel
C_4H_{10}	butane	lighter fluid
C_5H_{12}	pentane	solvent
C_6H_{14}	hexane	component of gasoline
$C_{7}H_{16}$	heptane	solvent
C_8H_{18}	octane	component of gasoline
C_9H_{20}	nonane	
$C_{10}H_{22}$	decane	

Pentane has 3 Isomers

n-pentane
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$
Isopentane
$$CH_3$$

$$CH_3 - CH - CH_2 - CH_3$$
neopentane
$$CH_3$$

$$CH_3 - C - CH_3$$

$$CH_3 - C - CH_3$$

These are not different isomers

$$CH_3 - CH_2 - CH - CH_3$$

$$CH_3$$

 $CH_3 - CH - CH_2 - CH_3$

$$\begin{array}{c} CH_3-CH-CH_2-CH_3 \\ CH_3 \end{array}$$

They are all isopentane

Nomenclature after Pentane

Step 1) Count the carbon atom in the longest continuous carbon chain.

8 carbon atoms in the longest carbon chain It's an **Octane.**

Nomenclature after Pentane (cont.)

Step 2) Name the secondary alkane group according to the following chart.

- CH₃ methyl
 CH₂CH₃ ethyl
 CH₂CH₂CH₃ propyl
 CH₂CH₂CH₃ butyl
- CH₃
 CH isopropyl

Nomenclature after Pentane (cont.)

Step 3) Number the carbon chain so that the secondary alkane falls on the lowest possible number.

 $\begin{array}{c} \text{ (1) } \text{ CH}_3 \\ \text{ (2) } \text{ CH}_2 \\ \text{ (3) } \text{ CH}_2 \\ \text{ (CH}_3 \text{ CH} - \text{ CH}_2 - \text{ CH}_2 - \text{ CH}_2 - \text{ CH}_3 \\ \text{ (4) } \text{ (5) } \text{ (6) } \text{ (7) } \text{ (8)} \\ \end{array}$

4-methyloctane.

Ex 1) Naming Alkanes

Ex 2) Naming Alkanes

$$\label{eq:ch2-ch3} \begin{aligned} \mathsf{CH}_2 - \mathsf{CH}_3 \\ \mathsf{CH} - \mathsf{CH}_2 - \mathsf{CH}_3 \\ \mathsf{CH}_2 \\ \mathsf{CH}_3 - \mathsf{CH} - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_3 \end{aligned}$$

